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Purely organic materials with negative and near-zero dielectric permittivity can be easily fabri-

cated. Here, we develop a theory of nonlinear non-steady-state organic plasmonics with strong laser

pulses that enable us to obtain near-zero dielectric permittivity during a short time. Our considera-

tion is based on the model of the interaction of strong (phase modulated) laser pulse with organic

molecules developed by one of the authors before, extended to the dipole-dipole intermolecular

interactions in the condensed matter. We have proposed to use non-steady-state organic plasmonics

for the enhancement of intersite dipolar energy-transfer interaction in the quantum dot wire that

influences on electron transport through nanojunctions. Such interactions can compensate Coulomb

repulsions for particular conditions. We propose the exciton control of Coulomb blocking in the

quantum dot wire based on the non-steady-state near-zero dielectric permittivity of the organic host

medium. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928181]

Plasmonics and metamaterials provide great scope for

concentrating and manipulating the electromagnetic field

on the subwavelength scale to achieve dramatic enhance-

ment of optical processes and to develop super-resolution

imaging, optical cloaking, etc.1–4 However, metallic inclu-

sions in metamaterials are sources of strong absorption

loss. This hinders many applications of metamaterials and

plasmonics and motivates to search for efficient solutions to

the loss problem.5 Highly doped semiconductors5,6 and

doped graphene7–9 can in principle solve the loss problem.

However, the plasmonic frequency in these materials is an

order of magnitude lower than that in metals making the

former most useful at mid-IR and THz regions. In this rela-

tion, the question arises whether metal-free metamaterials

and plasmonic systems, which do not suffer from excessive

damping loss, can be realized in the visible range? With no

doubts, inexpensive materials with such advanced proper-

ties can impact whole technological fields of nanoplas-

monics and metamaterials.

Recently, Noginov et al. showed that purely organic

materials characterized by low losses with negative, near-

zero, and smaller than unity dielectric permittivities can be

easily fabricated, and propagation of a surface plasmon

polariton at the material/air interface was demonstrated.10

And even non-steady-state organic plasmonics with strong

laser pulses may be realized11 that can enable us to obtain

near-zero dielectric permittivity during a short time only.

Approach10 was explained in simple terms of the Lorentz

model for linear spectra of dielectric permittivities of thin

film dyes. However, the experiments with strong laser

pulses11 challenge theory.

Here, we develop a theory of nonlinear non-steady-state

organic plasmonics with strong laser pulse excitation. Our

consideration is based on the model of the interaction of

strong (phase modulated) laser pulse with organic

molecules,12 extended to the dipole-dipole intermolecular

interactions in the condensed matter. We propose the exciton

compensation of Coulomb blocking (ECCB)13 in the quan-

tum dot wire based on the non-steady-state near-zero dielec-

tric permittivity of the organic host medium using chirped

laser pulses.

Let us extend our picture of “moving” potentials of Ref.

12 to a condensed matter. We consider a molecule with two

electronic states n¼ 1 (ground) and 2 (excited) in a solvent

described by the Hamiltonian H0 ¼
P2

n¼1 jni½En þWn

ðQÞ�hnj, where E2 > E1;En is the energy of state n, and

WnðQÞ is the adiabatic Hamiltonian of reservoir R (the vibra-

tional subsystems of a molecule and a solvent interacting

with the two-level electron system under consideration in

state n). The molecule is affected by a (phase modulated)

pulse EðtÞ ¼ ð1=2ÞeEðtÞ expð�ixtþ iuðtÞÞ þ c:c:, the fre-

quency of which is close to that of the transition 1! 2.

Here, EðtÞ and uðtÞ describe the change of the pulse ampli-

tude and phase in time, e is unit polarization vectors, and the

instantaneous pulse frequency is xðtÞ ¼ x� duðtÞ=dt.
One can describe the influence of the vibrational subsys-

tems of a molecule and a solvent on the electronic transition

within the range of definite vibronic transition related to a

high frequency optically active (OA) vibration as a modula-

tion of this transition by low frequency (LF) OA vibrations

fxsg.14 In accordance with the Franck-Condon principle, an

optical electronic transition takes place at a fixed nuclear con-

figuration. Therefore, the quantity u1ðQÞ ¼ W2ðQÞ �W1ðQÞ
�hW2ðQÞ �W1ðQÞi1 representing electron-vibration cou-

pling is the disturbance of nuclear motion under electronic

transition, where hin stands for the trace operation over the

reservoir variables in the electronic state n. Electronic transi-

tion relaxation stimulated by LFOA vibrations is described by

the correlation function KðtÞ ¼ hað0ÞaðtÞi of the correspond-

ing vibrational disturbance with characteristic attenuation
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time ss,
15–17 where a � �u1=�h. The analytic solution of the

problem under consideration has been obtained due to the

presence of a small parameter. For broad vibronic spectra sat-

isfying the “slow modulation” limit, we have r2ss2
s � 1

where r2s ¼ Kð0Þ is the LFOA vibration contribution to a

second central moment of an absorption spectrum, the half

bandwidth of which is related to r2s as Dxabs ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2s ln 2
p

.

According to Refs. 16 and 17, the following times are charac-

teristic for the time evolution of the system under considera-

tion: r�1=2
2s < T0 � ss, where r�1=2

2s and T0 ¼ ðss=r2sÞ1=3
are

the times of reversible and irreversible dephasing of the elec-

tronic transition, respectively. The characteristic frequency

range of changing the optical transition probability can be eval-

uated as the inverse T0, i.e., ðT0Þ�1: Thus, one can consider T0

as a time of the optical electronic transition. Therefore, the in-

equality ss � T0 implies that the optical transition is instantane-

ous where relation T0=ss � 1 plays the role of a small

parameter. This made it possible to describe vibrationally non-

equilibrium populations in electronic states 1 and 2 by balance

equations for the intense pulse excitation (pulse duration

tp > T0) and solve the problem.12,18

Equations of Ref. 12 describing vibrationally non-

equilibrium populations in electronic states j¼ 1, 2 for the

exponential correlation function KðtÞ=Kð0Þ � SðtÞ ¼ exp

ð�jtj=ssÞ and the intense chirped pulse excitation, extended

to the dipole-dipole intermolecular interactions in the con-

densed matter, take the following form:26

@qjj a; tð Þ
@t

¼ �1ð Þjp
2�h2

d x21 � pDn� x tð Þ � a½ �g2

� jD21
~E tð Þj2D0 a; tð Þ þ Ljjqjj a; tð Þ; (1)

where g � ðeb þ 2Þ=3; D0ða; tÞ ¼ q11ða; tÞ � q22ða; tÞ; Dn ¼
n1 �n2; D21 is the electronic matrix element of the dipole

moment operator. Here, qjj are the diagonal elements of the

density matrix, x21 is the frequency of Franck-Condon tran-

sition 1! 2, operator Ljj ¼ s�1
s ½1þ a� dj2xst

� �
@

@ a�dj2xstð Þ
þr2s

@2

@ a�dj2xstð Þ2� describes the diffusion with respect to the

coordinate a in the corresponding effective parabolic poten-

tial, UjðaÞ; dij is the Kronecker delta, and xst ¼ �hr2s=ðkBTÞ
is the Stokes shift of the equilibrium absorption and lumines-

cence spectra. The partial density matrix of the system

qjjða; tÞ describes the system distribution in states 1 and 2

with a given value of a at time t. The complete density ma-

trix averaged over the stochastic process, which modulates

the system energy levels, is obtained by integration of

qjjða; tÞ over a, hqijjðtÞ ¼
Ð

qjjða; tÞda, where quantities

hqijjðtÞ are the normalized populations of the corresponding

electronic states: hqijjðtÞ � nj; n1 þ n2 ¼ 1. Here, eb is the

“bulk” relative permittivity (which can be due distant high-

frequency resonances of the same absorbing molecules or a

host medium), p ¼ 4p
3�h jD12j2N is the strength of the near

dipole-dipole interaction,19 N is the density of molecules.

Knowing qjjða; tÞ, one can calculate the susceptibility

vðX; tÞ12 that enables us to obtain the dielectric function e
due to relation eðX; tÞ ¼ 1þ 4pvðX; tÞ

e X; tð Þ ¼ 1þ ipg

( ffiffiffiffiffiffiffiffiffi
p

2r2s

r
w

X� x21 � pDn tð Þð Þffiffiffiffiffiffiffiffiffi
2r2s

p
� �

�prag
2

ðt

0

dt0D0 x21 � pDn t0ð Þ � x t0ð Þ; t0
� �

� ~J t0ð Þ
X2

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s

r t� t0ð Þ

r
w

Xþ pDn tð Þ � xj t; t0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r t� t0ð Þ

p
" #)

;

(2)

where ~JðtÞ is the power density of the exciting radiation, ra

is the cross section at the maximum of the absorption band,

rðt� t0Þ ¼ r2s½1� S2ðt� t0Þ�; xjðt; t0Þ ¼ x21 � dj2xst þ ½xðt0Þ
�x21 þ pDnðt0Þ þ dj2xst�Sðt� t0Þ are the first moments of

the transient absorption (j¼1) and the emission (j¼2) spec-

tra, and wðzÞ ¼ expð�z2Þ½1þ i 2ffiffi
p
p
Ð z

0
exp ðy2Þdy� is the proba-

bility integral of a complex argument.20 It is worthy to note

that magnitude eðX; tÞ does make sense, since it changes in

time slowly with respect to dephasing. In other words, eðX; tÞ
changes in time slowly with respect to the reciprocal charac-

teristic frequency domain of changing eðXÞ.
Let us consider the particular case of fast vibrational

relaxation when one can put the correlation function

Sðt� t0Þ equal to zero. Physically, it means that the equi-

librium distributions into the electronic states have had

time to be set during changing the pulse parameters.

Using Eq. (1), one obtains the equations for the popula-

tions of electronic states n1;2 in the case under considera-

tion, which represents extending Eq. (25) of Ref. 12 to

the interacting medium

dn1;2

dt
¼6rag

2 exp � x21� pDn�x tð Þ �xst½ �
2r2s

2
( )

� ~J n2�n1exp

x tð Þ þ pDn�x21þ
xst

2

� �
kBT=�h

2
64

3
75

8><
>:

9>=
>;6

n2

T1

;

(3)

where we added term “6n2=T1” taking lifetime T1 of the

excited state into account. In case of fast vibrational relaxa-

tion, Eq. (2) becomes

e X; tð Þ ¼ 1þ ipg

ffiffiffiffiffiffiffiffiffi
p

2r2s

r X
j¼1;2

�1ð Þj

� nj tð Þw X� x21 þ pDn tð Þ þ d2jxstffiffiffiffiffiffiffiffiffi
2r2s

p
" #

: (4)

Eqs. (1) and (3) for populations are nonlinear equations

where the transition frequencies are functions of the electronic

states populations. However, one can use pulses that are suit-

ably chirped to compensate for a change of frequency of the

optical transition in time induced by the pulses themselves.

This idea was proposed in studies of a two-state system in rela-

tion to Rabi oscillations in inter-subband transitions in quan-

tum wells21 and for obtaining efficient stimulated Raman

adiabatic passage in molecules in a dense medium.19 Let us

suppose that we use suitably chirped pulses compensating the
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“local field” detuning pDn that enables us to keep the value of

x21 � pDnðtÞ � xðtÞ � Dx as a constant. In that case, one

can obtain an integral equation for non-equilibrium population

difference D0ðDx; tÞ.26 We also use Eqs. (3) and (4) in the

case under consideration to demonstrate obtaining near-zero

dielectric function in non-steady-state regime. Consider a

dense collection of molecules (N � 1021 cm�3 (Ref. 10)) with

parameters close to those of molecule LD690:12 ffiffiffiffiffiffi
r2s
p ¼

546 cm�1; D12 � 10�17 CGSE that gives xst ¼ 1420 cm�1,

p ¼ 2107: 2 cm�1. We put eb ¼ 1 (Ref. 10) and

Dx ¼ �420 cm�1. Fig. 1 shows the population of excited

electronic state n2 and the real e0ðX; tÞ and imaginary e00ðX; tÞ
parts of eðX; tÞ for X�x21¼ �2: 040 5

ffiffiffiffiffiffiffiffiffi
2r2s

p
, during the

action of a rectangular light pulse of power density ~J that

begins at t¼ 0. Here, we denoted the probability of the

optical transitions induced by external field as W ¼ rag2

exp½�Dx2=ð2r2sÞÞ�~J , and s ¼ Wt—dimensionless time.

Fig. 1 illustrates non-steady-state near-zero dielectric permit-

tivity. As population n2 approaches to 1, dielectric permittivity

approaches to zero. This may be applied to ECCB in nano-

junctions. It is worthy to note that W ¼ 1012 s�1 (see the fig-

ure caption of Fig. 1) is achieved at power densities of the

exciting radiation, ~J � 1028 phot
cm2s

, for the absorption cross sec-

tion ra � 10�16cm2 that is typical for dyes.

In Ref. 13, we studied the influence of both exciton

effects and Coulomb repulsion on current in nanojunctions.

We showed that dipolar energy-transfer interactions

between the sites in the wire can at high voltage compen-

sate Coulomb blocking for particular relationships between

their values. Although in free exciton systems dipolar inter-

actions J (�0:01� 0:1eV (Ref. 22)) are considerably

smaller than on-site Coulomb interaction U (characteristi-

cally U � 1 eV (Ref. 23)) the former may still have strong

effects under some circumstances, e.g., in the vicinity of

metallic structures in or near the nanojunctions. In such

cases, dipolar interactions may be enhanced. The enhance-

ment of the dipole-dipole interaction for the dimer of silver

spheres and for a single sphere reached the value of 0.13 eV

for nanosphere-shaped metallic contacts,13 which was

smaller than U. In addition, this enhancement was accom-

panied by metal induced damping of excitation energy.

Here, we show that purely organic materials characterized

by low losses with near-zero dielectric permittivities will

enable us to obtain �hJ � 1 eV �U. Let us consider a nano-

junction consisting of a two site quantum dot wire (each

represented by its ground, jgi, and excited, jei, states) posi-

tioned between two leads with applied voltage bias

eVbs ¼ lL � lR, Fig. 2. The junction is found in an organic

material with dielectric permittivity e. The quantum dots of

the wire posses transition dipole moments D1 and D2.

The point dipoles are positioned at points r1 and r2, respec-

tively, and oscillate with frequency X. The interaction

energy between the dipoles can be written as J12 þ J21

where Jij ¼ �ð1=2ÞDi 	 Ejðri;X; tÞ (i; j ¼ 1; 2; i 6¼ j),
Ejðri;X; tÞ is the electric field at a point ri induced by the

dipole Dj and is given by Coulomb’s law Eðr;X; tÞ ¼
e�1ðX; tÞ

Ð
qjðr0Þðr� r0Þjr� r0j�3d3r0 corresponding to the

electrostatic approximation. Such extension of the electro-

static formula is possible due slow changes in time of

eðX; tÞ (see above). Here, qjðr0Þ is the external charge tran-

sition density created by dipole Dj. One can show that

J12 ¼ J21 � �h
2

JðX; tÞ.24 If the dipoles are oriented parallel to

the symmetry axis of the junction, JðX; tÞ is given by

JðX; tÞ ¼ Jvac=eðX; tÞ, where Jvac ¼ �2�h�1D1D2jr1 � r2j�3

is the dipole-dipole interaction in vacuum. The bottom of

Fig. 4 shows J as a function of time for a medium with

dielectric function given by Fig. 1. Putting D1 ¼ D2 ¼ 25D
and jr1 � r2j ¼ 5 nm, one gets �hjJvacj ¼ 0:006 25 eV, and

the value of �hjJðX; tÞj ¼ 1: 660 2 eV for s¼ 10.

Let us calculate current through the two site quantum

dot nanojunction described above using approach of Ref. 13.

The corresponding Hamiltonian is H ¼ Hwire þ Hleads þ Hint

where Hleads ¼
P

k2fL;RgEkc†
kck

FIG. 1. Population of the excited state (dots), and real (solid line), and imag-

inary (dashed line) parts of the dielectric function as functions of time for

WT1 ¼ 1000. For a typical value of the lifetime of the excited state T1 ¼
10�9 s, this gives W ¼ 1012 s�1. Corresponding times t ¼ s=W ¼ s� 10�12

s lie in the picosecond time range.

FIG. 2. A model for energy-transfer induced effects in conduction nanojunc-

tion consisting of a two site quantum dot wire between two metal leads with

applied voltage bias. Each site is represented by its ground, j1gi and j2gi,
and excited, j1ei and j2ei, levels with the nearest neighbor site coupling Dg

and De. The two metal leads characterized by electrochemical potentials lR

and lL are coupled with their nearest site by Hint, Eq. (6), with the transfer

rates C2e; C2g; C1e, and C1g that are calculated using Eq. (6) of Ref. 13. J
indicates exciton hopping.

053302-3 B. D. Fainberg and G. Li Appl. Phys. Lett. 107, 053302 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

132.66.11.211 On: Wed, 05 Aug 2015 14:13:09



Hwire ¼
X

m ¼ 1; 2
f ¼ g; e

Emf c
†
mf cmf �

X
f¼g;e

Df c†
2f c1f þ c†

1f c2f

	 


þ �h Jb†
1b2 þ H:c:

	 

þ U

2

X
m¼1;2

Nm Nm � 1ð Þ; (5)

Hint ¼
X

mf ;k2Km

V
ðmf Þ
k c†

kcmf þ H:c:; (6)

where c†
mf (cmf) (m¼ 1, 2, f ¼ g; e; see Fig. 2) are creation

(annihilation) operators for electrons in the different site

states of energies Emf, while c†
k (ck) (k 2 L;R) are creation

(annihilation) operators for free electrons (energies Ek) in the

leads L and R. nmf ¼ c†
mf cmf are the occupation operators for

the different site states, and site occupation operators are

given by Nm ¼ nmg þ nme. The operators b†
m ¼ c†

mecmg and

bm ¼ c†
mgcme are exciton creation and annihilation operators

on the molecular sites m¼ 1 and 2. In Eq. (5), Df represents

electron tunneling between site states of similar energies

(i.e., between jgi levels of sites 1 and 2 and between jei lev-

els on these sites), the J terms represent exciton hopping

(energy transfer) between molecular sites and the U terms

correspond to on-site Coulomb interactions. The molecule-

leads interaction Hint describes electron transfer between the

molecular bridge and the leads that give rise to net current in

the biased junction. In (6), Km is the lead closer the molecu-

lar site m (K1 ¼ L; K2 ¼ R) and H:c: denotes Hermitian con-

jugate. Since in the medium with near-zero dielectric

permittivities, both exciton-exciton interaction J and on-site

Coulomb interaction U can achieve the value of about 1 eV

(see above), we account and add the additional two off-

resonance terms to Hwire, Eq. (5),

Hoff�ex�ex ¼ �hJðX; tÞb†
1b†

2 þ H:c: ; (7)

Hoff�el�el ¼ �
X

f ;f 0¼g;e;f 6¼f 0

Dff 0 ðĉ†
2f ĉ1f 0 þ ĉ†

1f 0 ĉ2f Þ: (8)

Eq. (8) takes into consideration the possibility of the charge

transfer between jgi state of one site and jei state of another

that may be in resonance due to the reconstruction of the

wire energetic spectrum by large J and U. Eq. (7) is so called

non-Heitler-London term25 taking into account the creation

and annihilation for excitation simultaneously at two sites

(quantum dots) when �hJ � Eme � Emg. In this relation the

following question arises: “Does the effect of ECCB survive

for such large values of �hJ � 1 eV �U?” Fig. 3 shows that

the ECCB does survive for large values of J � 1 eV. We put

the bias voltage Vbs¼ 8 eV and the rate of charge transfer

from a quantum dot to the corresponding lead C ¼ 0:02 eV

in our simulations, and denoted the unit of current as

I0 ¼ eC=�h (e is the charge of one electron). Fig. 4 shows cur-

rent through the nanojunction during the action of the rectan-

gular laser pulse with parameters given above on the host

organic material. One can see dramatic increase in the cur-

rent when �hJ approaches to �U for Dg ¼ De, and to 6U for

Dg 6¼ 0 and De ¼ 0. After this moment, the current decreases

in spite of increasing J, since its value exceeds that of U. So,

current exists during the time that is much shorter than the

pulse duration. As a matter of fact, Fig. 4 illustrates optical

switches based on the effect of ECCB-ECCB switches.

Furthermore, if one does not use suitably chirped pulses

(see above), Eqs. (1) and (3) for populations become nonlin-

ear equations and can demonstrate a bistable behavior that

will be considered elsewhere.
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